Dates | Topics | with Matlab | with Python | Lecture Slides | HW | |||
02/21/2018 | Introduction | iNote#01m | pdf#01 | Installation Basic Python CVXPY Installation |
||||
02/28/2018 | Linear Algebra 1 | iNote#02m | iNote#02py | iSlide#02py |
pdf#02 |
|||
02/28/2018 | Linear Algebra 2 | iNote#03m | iNote#03py | iSlide#03py | pdf#03 | |||
03/07/2018 | Linear Algebra 3 | iNote#04m |
iNote#04py |
iSlide#04py |
pdf#04 |
|||
03/12/2018 | Optimization 1 | iNote#05m | iNote#05py | iSlide#05py | pdf#05 | |||
Optimization 2 | iNote#06m | |||||||
Graph | iNote#07m | |||||||
03/14/2018 | Regression 1 | iNote#08m | iNote#08py | iSlide#08py | pdf#06 | |||
03/19/2018 | Regression 2 | iNote#09m |
iNote#08py | iSlide#08py | pdf#07 | |||
03/21/2018 | Regression 3 | iNote#09py | iSlide#09py | pdf#08 | ||||
03/26/2018 | Classification: Perceptron | iNote#11m | iNote#11py | iSlide#11py | pdf#09 | |||
03/28/2018 | SVM | iNote#12m | iNote#12py | iSlide#12py | pdf#10 | |||
04/02/2018 | Logistic Regression | iNote#13m | iNote#13py | iSlide#13py | pdf#11 | |||
04/04/2018 | Clustering: K-means | iNote#14m | iNote#14py | iSlide#14py | pdf#12 | |||
04/11/2018 | Midterm | |||||||
04/09/2018 | Statistics | iNote#15m | iNote#15py | iSlide#15py | pdf#13 | |||
04/16/2018 | Monte Carlo Simulation | iNote#16m | iNote#16py | iSlide#16py | pdf#14 | |||
04/18/2018 | Dim. Reduction: PCA | iNote#17m | iNote#17py | iSlide#17py | pdf#15 | |||
04/18/2018 | Fisher Discriminant Analysis | iNote#18m | iNote#18py | iSlide#18py | pdf#16 | |||
SVD | iNote#19m | iNote#19py | ||||||
ICA | iNote#20m | iNote#20py | ||||||
Network | iNote#21m | iNote#21py | ||||||
04/23/2018 04/25/2018 04/30/2018 |
Artificial Neural Networks | iNote#26py | pdf#21 | |||||
05/02/2018 | Autoencoder | iNote#27py | pdf#22 | |||||
05/09/2018 | Convolutional Neural Networks | iNote#28py | pdf#23 | |||||
Recurrent Neural Networks | iNote#29py | pdf#24 | ||||||
05/14/2018 | Probability | iNote#22m | iNote#22py | iSlide#22py | pdf#17 | |||
05/21/2018 | Gaussian Distribution | iNote#23m | iNote#23py | iSlide#23py | pdf#18 | |||
05/23/2018 | Parameter Estimation | iNote#24m | iNote#24py | iSlide#24py | pdf#19 | |||
05/30/2018 | Probabilistic Machine Learning | iNote#25m | iNote#25py | iSlide#25py | pdf#20 | |||
06/04/2018 | Final Exam | |||||||
Bayesian Machine Learning | iNote#26m iNote#27m |
|||||||
Gaussian Process | iNote#28m | |||||||
Kalman Filter | iNote#29m | |||||||
Scikit-learn | iNote#30py | |||||||
Final |
Dates | Topics | Lecture Slides with python | ||
Deep learning overview | iNote#01py | |||
Neural Networks | iNote#02py | |||
CNN | iNote#03py | |||
Time Series | iNote#04py | |||
Hidden Markov Model | iNote#05py | |||
RNN | iNote#06py | |||
MDP and Reinforcement Learning | iNote#07py |
Dates | Topics | Lecture Slides with python | ||
02/06/2017 | Introduction | iNote#00py | ||
02/06/2017 | Supervised Learning | iNote#01py | ||
02/06/2017 | Unsupervised Learning | iNote#02py | ||
02/06/2017 | Neural Network | iNote#03py | ||
02/06/2017 | Convolutional Neural Network | iNote#04py | ||
02/06/2017 | Recurrent Neural Network | iNote#05py | ||
02/06/2017 | Hands-on Practice | iNote#06py |
Dates | Topics | Lecture Slides with python | ||
04/26/2017 | Introduction | iNote#00py | ||
04/26/2017 | Supervised Learning | iNote#01py | ||
04/26/2017 | Unsupervised Learning | iNote#02py | ||
04/26/2017 | Neural Network | iNote#03py | ||
04/26/2017 | Convolutional Neural Network | iNote#04py | ||
04/26/2017 | Recurrent Neural Network | iNote#05py | ||
04/26/2017 | Hands-on Practice | iNote#06py |
Dates | Topics | Lecture Slides with python | ||
07/14/2017 | Neural Network | iNote#01py | ||
07/14/2017 | Convolutional Neural Network | iNote#02py | ||
07/14/2017 | Autoencoder | iNote#03py | ||
07/14/2017 | Recurrent Neural Network | iNote#04py |
Dates | Topics | Lecture Slides | Download | |
Installation Manual (Python and TensorFlow) | iNote#00py | installation files | ||
Lecture Notes and Codes (*.ipynp) | zipped ipynp files | |||
Basic Python | iNote#01py | pdf#01 | ||
Machine Learning | iNote#02py | pdf#02 | ||
Supervised Learning | iNote#03py | pdf#03 | ||
Unsupervised Learning | iNote#04py | pdf#04 | ||
Neural Network in numpy | iNote#05py | pdf#05 | ||
Neural Network in TensorFlow | iNote#06py | pdf#06 | ||
Autoencoder | iNote#07py | pdf#07 | ||
Convolution Neural Network | iNote#08py | pdf#08 | ||
Recurrent Neural Network | iNote#09py | pdf#09 |
Dates | Topics | Lecture Slides | Download | |
Installation Manual (Python and TensorFlow) | iNote#00py | pdf#00 | installation files ipynp files |
|
Basic Python | iNote#01py | pdf#01 | ||
Overview | pdf#overview | |||
08/21/2017 | Neural Network in numpy | iNote#02py | pdf#02 | |
08/22/2017 | Neural Network in TensorFlow | iNote#03py | pdf#03 | |
08/22/2017 | Autoencoder | iNote#04py | pdf#04 | |
08/22/2017 | Convolution Neural Network | iNote#05py | pdf#05 | |
08/22/2017 | Recurrent Neural Network | iNote#06py | pdf#06 |
Dates | Topics | Lecture Slides | Download | |
Installation Manual (Python and TensorFlow) | iNote#00py | installation files ipynp files |
||
Basic Python | iNote#01py | pdf#01 | ||
08/25/2017 | Overview | pdf#overview | ||
08/25/2017 | Machine Learning | iNote#02py | pdf#02 | |
08/25/2017 | Supervised Learning | iNote#03py | pdf#03 | |
08/25/2017 | Unsupervised Learning | iNote#04py | pdf#04 | |
08/25/2017 | Neural Network in numpy | iNote#05py | pdf#05 | |
08/25/2017 | Neural Network in TensorFlow | iNote#06py | pdf#06 | |
08/25/2017 | Autoencoder | iNote#07py | pdf#07 | |
08/25/2017 | Convolution Neural Network | iNote#08py | pdf#08 | |
08/25/2017 | Recurrent Neural Network | iNote#09py | pdf#09 |
Dates | Topics | Lecture Slides with python | Download | |
Installation Manual (Python and TensorFlow) | iNote#00py | installation files | ||
Lecture Notes and Codes (*.ipynp) | zipped ipynp files | |||
Basic Python | iNote#01py | pdf#01 | ||
10/18/2017 | Neural Network | iNote#02py | pdf#02 | |
10/18/2017 | Autoencoder | iNote#03py | pdf#03 | |
10/18/2017 | Convolutional Neural Network | iNote#04py | pdf#04 | |
10/18/2017 | Recurrent Neural Network | iNote#05py | pdf#05 |
Dates | Topics | with python | Lecture Slides | Download | |
Installation Manual (Python and TensorFlow) | iNote#00py | installation files | |||
Lecture Notes and Codes (*.ipynb) | zipped pdf files | zipped ipynb files | |||
Basic Python | iNote#00py | pdf#00 | |||
02/01/2018 | Machine Learning | iNote#01py | iSlide#01py | pdf#01 | |
02/01/2018 | Supervised Learning without sklearn | iNote#02py | iSlide#02py | pdf#02 | |
02/01/2018 | Supervised Learning | iNote#03py | iSlide#03py | pdf#03 | |
02/01/2018 | Unsupervised Learning | iNote#04py | iSlide#04py | pdf#04 | |
02/01/2018 | Neural Network | iNote#05py | iSlide#05py | pdf#05 | |
02/02/2018 | Autoencoder | iNote#06py | iSlide#06py | pdf#06 | |
02/02/2018 | Convolutional Neural Network | iNote#07py | iSlide#07py | pdf#07 | |
02/02/2018 | Recurrent Neural Network | iNote#08py | iSlide#08py | pdf#08 | |
02/02/2018 | Advanced Deep Learning | iNote#09py | pdf#09 | ||
02/02/2018 | Epilogue | iNote#10py | pdf#10 |
Dates | Topics | with python | Download | |
Installation Manual (Python and TensorFlow) | iNote#00py | installation files | ||
Lecture Notes and Codes (*.ipynb) | zipped ipynb files | |||
01/17/2018 | Basic Python | iNote#01py | pdf#01 | |
01/17/2018 | Optimization | iNote#02py | pdf#02 | |
01/17/2018 | Regression and Classification | iNote#03py | pdf#03 | |
01/17/2018 | Perceptron | iNote#04py | pdf#04 | |
01/17/2018 | Neural Networks | iNote#05py | pdf#05 | |
01/17/2018 | Autoencoder | iNote#06py | pdf#06 | |
01/17/2018 | CNN | iNote#07py | pdf#07 | |
01/18/2018 | RNN | iNote#08py | pdf#08 | |
01/18/2018 | Advanced Deep Learning | iNote#09py | pdf#09 | |
01/18/2018 | Epilogue | iNote#10py | pdf#10 |
Dates | Topics | with python | Download | |
Installation Manual (Python and TensorFlow) | iNote#00py | installation files | ||
Lecture Notes and Codes (*.ipynb) | zipped ipynb files | |||
PPT Slides (*.pdf) | zipped ppt files | |||
01/29/2018 | Basic Python | iNote#01py | pdf#01 | |
01/29/2018 | Optimization | iNote#02py | pdf#02 | |
01/29/2018 | Regression and Classification | iNote#03py | pdf#03 | |
01/29/2018 | ANN | iNote#04py | pdf#04 | |
01/29/2018 | Autoencoder | iNote#05py | pdf#05 | |
01/29/2018 | CNN | iNote#06py | pdf#06 | |
01/29/2018 | RNN | iNote#07py | pdf#07 | |
01/29/2018 | Epilogue | iNote#08py | pdf#08 |
Dates | Topics | with python | Download | |
Installation Manual (Python and TensorFlow) | iNote#00py | installation files | ||
Lecture Notes and Codes (*.ipynb) | zipped ipynb files | |||
PPT Slides (*.pdf) | zipped ppt files | |||
02/08/2018 | Basic Python | iNote#01py | pdf#01 | |
02/08/2018 | Optimization | iNote#02py | pdf#02 | |
02/08/2018 | Regression and Classification | iNote#03py | pdf#03 | |
02/08/2018 | ANN | iNote#04py | pdf#04 | |
02/08/2018 | Autoencoder | iNote#05py | pdf#05 | |
02/08/2018 | CNN | iNote#06py | pdf#06 | |
02/08/2018 | RNN | iNote#07py | pdf#07 | |
02/08/2018 | Epilogue | iNote#08py | pdf#08 |